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DNA sequences have been mapped to the chromosomes of Podocarpus species from New Zealand and Australia
by ¯uorescent in situ hybridization. Unlike other conifers, these species show only one pair of major sites of 45S
rDNA genes, and two additional minor sites were seen in the Australian P. lawrencei. Unusually, 45S sequences
collocalize to the same chromosomal region as the 5S rDNA. The telomere probe (TTTAGGG)n hybridizes to the
ends of all chromosomes as well as to a large number of small sites distributed along the length of all chromo-
somes. Two other simple sequence repeats, (AAC)5 and (GATA)4, show a diffuse pattern of hybridization sites
distributed along chromosomes. Southern blots using a variety of probes obtained from the reverse transcriptase of
retroelements (gypsy, copia and LINE) from P. totara, P. nivalis and Dacrycarpus dacrydioides show that these
retroelements are abundant and widespread in Podocarpaceae and also in others conifers. Some retroelements such
as copia pPonty3 and gypsy pPot1li are more abundant in the genome of Picea abies and Ginkgo biloba than in
the species from which they were ampli®ed. ã 2002 Annals of Botany Company
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INTRODUCTION

Modern gymnosperms are representatives of an ancient
group of plants ®rst recorded as fossils in the Upper
Devonian (350 million years ago; Ma) (Biswas and Johri,
1997). They consist of two major groups, conifers and
cycads. The monophyletic origin of the gymnosperms has
been questioned (see Page, 1990) but recent molecular
phylogenetic studies provide strong support for monophyly
(Qiu et al., 1999; Soltis and Soltis, 2000). The gymnosperms
are characterized by large genomes and relatively low
chromosome numbers; polyploidy is rare (Khoshoo, 1959;
Murray, 1998). Enigmatic features of the chromosomes of
the gymnosperms include their characteristically large size
and the remarkable constancy of number and karyotype
amongst the species of most genera. Conspicuous examples
of this are found, for example, in Pinaceae. Hizume (1988)
has summarized much of the available information and has
shown that 178 out of 180 species in nine genera have the
chromosome number 2n = 24. This uniformity must have
been maintained for a very long period of time since in
Pinus the same karyotype is found in different sections of
the genus that were already present in the Cretaceous (90
Ma) (Stockey and Nishida, 1986). Support for the ancient
nature of the sectional divisions of the genus also comes
from the work of Krupkin et al. (1996) and Wang et al.
(2000) using `molecular clocks'.

When more detailed studies are made using differential
chromosome banding (MacPherson and Filion, 1981;
Hizume et al., 1989, 1993, 1995; Davies et al., 1997) and
in situ hybridization of repeat sequence DNA (Hizume et al.,
1992; Brown et al., 1993; Doudrick et al., 1995; Lubaretz
et al., 1996), a greater diversity of chromosome organ-
ization becomes apparent. Chromosome banding reveals
that species differ in the number of banded chromosomes,
size of the bands and their molecular composition
(MacPherson and Filion, 1981; Hizume et al., 1989, 1993,
1995; Davies et al., 1997). Most of the in situ studies have
investigated the distribution of ribosomal DNA (rDNA)
genes. In Pinus, for example, the number of major sites of
45S rDNA ranges from ten pairs in Pinus radiata D. Don
and Pinus taeda L. (Jacobs et al., 2000) to 12 pairs in Pinus
sylvestris L. (Lubaretz et al., 1996). The 5S sites are less
numerous but range in number from one to three pairs
(Doudrick et al., 1995; Hizume et al., 1995) and, in relation
to the 45S sites, may be either on different chromosomes
(Hizume et al., 1995), on the same chromosome but on
different arms (Doudrick et al., 1995) or closely adjacent
(Lubaretz et al., 1996). Other highly repeated DNA
sequences, such as retrotransposons, have been localized
to the chromosomes of Pinus elliottii Engelm. (Doudrick
et al., 1995; Kamm et al., 1996), and a satellite DNA family
cloned from Picea species has been located on different
subsets of chromosomes of Picea glauca (Moench) Voss
and Picea sitchensis (Bong.) Carr. (Brown et al., 1998). The
telomere repeat (TTTAGGG)n found in most angiosperms
has been localized at the ends of gymnosperm chromo-
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somes. Picea abies (L.) Karsten and Larix decidua Mill.
showed only terminal sites, but hybridization at centromeric
sites was also seen in Pinus sylvestris (Fuchs et al., 1995;
Lubaretz et al., 1996), and at a number of intercalary sites in
Pinus elliottii (Schmidt et al., 2000).

In contrast to the uniformity of chromosome number and
karyotype in most conifer families, Podocarpaceae are
chromosomally variable (Hair and Beuzenberg, 1958;
Hizume et al., 1988; Davies et al., 1997). Chromosome
numbers range from 2n = 18 to 2n = 38 and the karyotypes
consist of a mixture of different numbers of metacentric,
acrocentric and telocentric chromosomes. There have been
no previous molecular cytogenetic studies on the family,
and the aim of the present work was to investigate the
number and distribution of the repeat sequences in
Podocarpaceae so that comparisons can be made with the
other gymnosperm families.

MATERIALS AND METHODS

For in situ hybridization, ®ve species of Podocarpus and a
number of natural and arti®cially produced interspeci®c
hybrids were studied (Table 1). Voucher specimens of all
the plants are deposited in the herbarium of the University
of Auckland (AKU). DNA from a range of gymnosperms
(Table 2) was also used for analysis by Southern hybridiza-
tion.

Chromosome preparations were made from root tips that
were pretreated with 0´05 % colchicine for 24 h at 4 °C
followed by a further 24 h in water at 4 °C before ®xation in
acetic acid : ethanol, 1 : 3. The ®xed roots were digested for
30±40 min at 37 °C in a mixture of 2 % cellulase
(Calbiochem, La Jolla, CA, USA), 4 % cellulase
(Onozuka R10, Merck, Darmstadt, Germany), 2 % hemi-
cellulase (Sigma, St Louis, MO, USA), 0´5 % pectolyase
(Seishin, Tokyo, Japan) and 20 % liquid pectinase (Sigma)
in 0´01M citrate buffer, pH 4´6, and squashed without
heating on a slide.

The slides were hybridized with the following probes that
were labelled with biotin and digoxigenin by nick transla-
tion, PCR or random priming as described in Schwarzacher
and Heslop-Harrison (2000): (1) pTa71, which contains the
18S-26S rDNA (frequently called 45S rDNA) from
Triticum aestivum L. (Gerlach and Bedbrook, 1979) labelled
by nick translation; (2) pTa794, which contains a 410 bp
BamH1 fragment of the 5S rDNA from T. aestivum (Gerlach
and Dyer, 1980) labelled by PCR; (3) pPot1li and pPongy2
which contain 416 and 419 bp fragments of reverse
transcriptase of gypsy-like retroelements from Podocarpus
totara and P. nivalis, respectively (Friesen et al., 2001;
EMBL nucleotide database accession numbers AJ290646-
AJ290647); and (4) synthetic oligonucleotides
(TTTAGGG)5, (ACG)7, (AAC)5 and (GATA)4 labelled by
random priming.

The hybridization mixture was prepared as outlined in
Schwarzacher and Heslop-Harrison (2000) and the chromo-
somes were denatured at 90 °C for 8 min in a Hybaid
Omnislide thermal cycler, hybridized overnight at 37 °C and
washed, with the most stringent washes in 20 % formamide
in 0´1 3 SSC at 42 °C (allowing sequences with approx.
85 % identity to remain hybridized). Digoxigenin-labelled
probes were detected with an FITC conjugated sheep anti-
digoxigenin antibody (Roche, Basel, Switzerland) while
biotin-labelled probes were detected with streptavidin
conjugated to Cy3 (Sigma). Slides were counterstained
with DAPI (4¢,6-diamidino-2-phenylindole), mounted in
Citi¯uor AF1 (Agar Scienti®c, Stansted, UK) and observed
with a Nikon epi¯uorescence microscope. Photographs
were taken on Fuji Superia 400 colour print ®lm, digitized
and printed from Adobe Photoshop after contrast optimiza-
tion using only functions affecting the whole image.

TABLE 1. List of Podocarpus species and hybrids used for in situ hybridization

Species 2n Site of original collection Voucher

P. acutifolius Kirk 34 Unknown AKU23710
P. lawrencei Hook. f. 38 Mt. Kosciusco, New South Wales, Australia AKU23711
P. nivalis Hook. 38 Mt. Arthur, South Island, New Zealand AKU23712
P. totara Benn. ex D. Don 34 Mt Hikurangi, North Island, New Zealand AKU23713
P. totara `Aureus' 34 Unknown AKU23714
Hybrids
P. hallii probable hybrid 36 Natural hybrid, male parent unknown, Ngaruroro River, North Island, New Zealand AKU23715
P. nivalis 3 P. totara 36 Natural hybrid, Lake Lyndon, South Island, New Zealand AKU23716
Podocarpus `Country Park Flame' 36 Arti®cial hybrid of P. lawrencei 3 P. acutifolius AKU23717
Podocarpus `Country Park Fire' 38 Arti®cial hybrid of P. lawrencei 3 P. nivalis AKU23718

TABLE 2. List of species used for membrane hybridization

Species

Podocarpus totara
P. nivalis
P. lawrencei
Dacrycarpus dacrydioides (A. Rich.) De Laub.
Dacrydium cupressinum Lamb.
Halocarpus bidwillii (Kirk) Quinn
Picea abies (L.) Karsten
Pinus elliottii Engelm.
Araucaria araucana (Molina) K. Koch
Ginkgo biloba L.
Cycas circinalis L.
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DNA was extracted from young leaf material of different
gymnosperm species using the Qiagen DNAeasy Plant mini
kit or the 2 3 CTAB method. Isolated DNA was used
directly for PCR ampli®cation or digestion with the
restriction enzymes HindIII and HaeIII. Digested DNA
(5 mg) was separated on 1´2 % agarose gels, blotted, and
probed with the following clones that were all labelled by

PCR: (1) pDdgy1, a 417 bp fragment of reverse transcrip-
tase of gypsy-like element from Dacrycarpus dacrydioides
(A. Rich.) De Laub.; (2) pPongy2 and pPonty3, a 419 bp
fragment of reverse transcriptase of a gypsy-like element
from P. nivalis; (3) pPot3li, which contains a 257 bp
fragment of reverse transcriptase of a copia-like retro-
element (accession number AJ2(0731) from P. nivalis,

F I G . 1. Somatic chromosomes of Podocarpus species following in situ hybridization with repetitive DNA probes. Each ®gure part (A±G) shows one
complete metaphase or prophase. A, P. totara metaphase. Left: stained with DAPI (light blue) but not showing any banding; centre: probed with the
synthetic oligonucleotide (TTTAGGG)6 (red) showing terminal and some intercalary hybridization sites; right: hybridization (green) of the 45S rDNA
probe at one pair of sites. B, A P. totara metaphase hybridized with (TTTAGGG)6 showing terminal sites on all chromosomes and some intercalary
sites (green). C, A P. totara metaphase stained with DAPI (left), showing hybridization of 5S rDNA at one pair of sites (centre, green) and diffuse
hybridization of (GATA)4 (right, red). D, A metaphase of P. lawrencei showing conspicuous DAPI bands (left) and a major pair of interstitial 45S
sites and terminal minor sites (arrowed) following in situ hybridization (right, green). E, A P. lawrencei prophase showing that the major 45S rDNA
sites are decondensed. F, Metaphase of the hybrid `Country Park Fire' (P. lawrencei 3 P. nivalis) showing collocalization of 45S rDNA (green, left)
and 5S rDNA (red, right). The major sites are indicated by an arrow for the one derived from P. lawrencei and an arrowhead for that from P. nivalis.
The minor sites are not clearly resolved on the plate. G, P. nivalis metaphase chromosomes stained with DAPI (left) and showing the single pair of

sites of 45S rDNA hybridization on a medium-sized acrocentric chromosome pair (right, green).
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labelled by PCR; and (4) pDdli1, a fragment of a
LINElement isolated from D. dacrydioides, using the non-
radioactive chemiluminiscence method Alk-Phos Direct
(Amersham, Little Chalfont, UK).

RESULTS

Four of the ®ve Podocarpus species, those from New
Zealand, showed a single pair of hybridization sites with the
45S rDNA probe. In P. totara (Fig. 1A), P. hallii and P.
acutifolius the site was terminal on the largest acrocentric
pair whereas in P. nivalis it was terminal on the second
largest acrocentric pair (Fig. 1G). In the Australian species
P. lawrencei, there was a major interstitial site on one of the
small chromosome pairs and minor sites in terminal
positions on two other pairs of chromosomes (Fig. 1D). In
prophase cells, these sites had a somewhat reticulate
appearance with brightly ¯uorescing regions separated by
non-¯uorescing ones, most notable in P. lawrencei (Fig. 1E).
In the F1 hybrid `Country Park Fire' (P. lawrencei 3 P.

nivalis), there were clear differences in the degree of
reticulation of the two sites; one was similar to those in P.
lawrencei, whereas the other was less diffuse and consisted
of three clear foci.

The 5S rDNA probes hybridized to similar sites to
the 45S sites in all the taxa studied, a result that was
shown by both single-target hybridization to chromo-
somes with characteristic morphology and double-target
hybridization. In Fig. 1A and C, the longest acrocentric
chromosomes of P. totara were labelled with the two
rDNA probes. Collocalization was also seen in the
hybrid `Country Park Fire' (Fig. 1F), although the
chromosomes with the rDNA hybridization sites were of
different sizes and the exact site location also differed
between the two labelled chromosomes. At prophase, the
hybridization pattern with the 5S rDNA probe appeared
very similar to that with 45S rDNA.

The telomere probe showed clear hybridization sites at
the ends of all chromosomes of all taxa although the size of
the sites did appear to vary both between and within

F I G . 2. Genomic organization and abundance of retrotransposon families in various gymnosperms analysed by Southern hybridization of genomic
DNA digests. Luminographs show DNA from gymnosperm species digested with (1) HindIII and (2) HaeIII probed with (A) gypsy pDdgy1, (B) gypsy
pPongy2, (C) gypsy pPot3li, (D) copia pPonty3 and (E) LINE pDdli1. Podo, Podocarpus; Das, Dacrycarpus; Dam, Dacrydium; H, Halocarpus; A,

Araucaria.
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chromosomes (Fig. 1A and B). The telocentric chromo-
somes were clearly labelled at both ends. There were a
number of interstitial sites that were distributed along the
chromosome arms of most of the chromosomes (Fig. 1A and
B). Two simple sequence repeats, (AAC)5 and (GATA)4,
showed a diffuse pattern of hybridization sites along the
length of all chromosomes (GATA; Fig. 1C). No hybridiza-
tion was seen with the (ACG)7 probe or with the two gypsy-
like retroelements obtained from P. totara and P. nivalis.

The in situ hybridization protocol revealed up to four
pairs of DAPI bands in some metaphases of P. lawrencei
and its hybrids (Fig. 1D). None of the other species showed
DAPI banding of their chromosomes (Fig. 1A, C and G).

Five retroelement clones, pDdgy1 from Dacrycarpus
dacrydioides, pPongy2 from Podocarpus nivalis, pPotli3
from P. totara, pPonty3 from P. nivalis and pDdLi1 from D.
dacrydioides, were used for Southern hybridization to DNA
digests from Podocarpus, Dacrycarpus, Halocarpus and
other representative gymnosperm genera (Table 2; Fig. 2).
Each clone showed unique hybridization patterns and
revealed differences in organization of different retro-
elements between genera, although most sequences tested
were present in several genera. Probe pDdgy1 (Fig. 2A) was
abundant in all Podocarpaceae species and also hybridized
to DNA from Ginkgo biloba, but no hybridization was
detected to Cycas circinalis. Probe pPongy2 (Fig. 2B)
showed no hybridization to P. totara DNA or to the HindIII
digests of P. nivalis and D. dacrydioides but showed
distinct, though different, bands with the other taxa. Probe
pPot3li (Fig. 2C) showed weak hybridization signal to all
Podocarpaceae species, but strong signal with Picea abies
and Ginkgo biloba. Similar results were obtained with
Southern hybridization with the copia and LINE retro-
element clones pPonty3 (Fig. 2D) and pDdli1 (Fig. 2E).
pPonty3 showed low abundance in Podocarpaceae species,
but strong hybridization to Picea abies and Ginkgo biloba
DNA. pDdli1 showed only one fragment with HindIII
digested DNA from Dacrycarpus (from which it was
isolated) but strong hybridization to digested DNA from
Podocarpus nivalis, Ginkgo biloba and Picea abies.

DISCUSSION

Unlike most other genera in the conifers, Podocarpus shows
extensive karyological variation: species have chromosome
numbers that include n = 9, 10, 11, 17 and 19, and
karyotypes that comprise various combinations of meta-
centric, acrocentric and telocentric chromosomes (Hair and
Beuzenberg, 1958; Davies et al., 1997). At the molecular
level, our in situ hybridization results highlight both
variable and constant features of the karyotypes. There is
variation in the location and number of rDNA sites in the
genus. All the species examined have only one major 45S
rDNA site, but this is located on morphologically different
chromosomes: in three of the New Zealand species it is
terminal on the longest acrocentric chromosome, but in the
fourth it is terminal on the small acrocentric chromosome.
In the Australian species P. lawrencei, the major 45S site is
interstitial and it has small additional terminal sites on two
other pairs of chromosomes.

The 5S rDNA sites were tightly linked to the 45S sites in
all Podocarpus species examined, with 5S and 45S signal
collocalizing on the chromosomes. This collocalization has
not been found in other gymnosperms although the 45S and
5S sites are adjacent in species such as Pinus sylvestris,
Picea abies and Picea sitchensis (Lubaretz et al., 1996;
Brown and Carlson, 1997). In two bryophytes, one liverwort
(Marchantia polymorpha L.) and one moss (Funaria
hygrometrica Hedw.), the 5S rDNA has been found to be
inserted into the 45S rDNA repeat (Sone et al., 1999). Sone
et al. (1999) suggest that this arrangement of rDNAs
evolved after the separation of the bryophytes from other
land plants. The molecular organization of the two rDNA
repeats is unknown in Podocarpus, but understanding the
organization of these major gene clusters has consequences
for interpretations of the phylogeny of the group.

With respect to the 45S rDNA, the organization of the
clusters on chromosomes in Podocarpus differs from that
found in Pinus, Picea and Larix. In Pinus and Picea, the
number of major 45S rDNA sites is in the range of six to ten
pairs (Hizume et al., 1992; Brown et al., 1993; Doudrick
et al., 1995; Jacobs et al., 2000) and there are three major
pairs in Larix (Lubaretz et al., 1996). Several studies have
reported the presence of additional minor sites, some of
which are found at or near the centromere (Doudrick et al.,
1995; Friesen et al., 2001).

In situ hybridization with the telomeric probe gave
similar results in all the Podocarpus species. In addition to
terminal hybridization sites, there were large numbers of
interstitial sites distributed along the length of all chromo-
somes. Other works have shown that Pinus sylvestris
chromosomes have terminal and interstitial telomeric
sequence sites, some of which were centromeric (Fuchs
et al., 1995), while Schmidt et al. (2000) found multiple,
major intercalary sites in Pinus elliottii. In Picea abies and
Larix decidua, hybridization signals were con®ned to
chromosome ends (Lubaretz et al., 1996). Variability in
the interstitial sites and copy number of the telomeric
sequences seems to be characteristic of gymnosperms and
their distribution is mirrored by that of the other simple
sequence repeats that we have studied. No distribution
pattern was evident on the chromosomes.

The presence of distinct DAPI bands in the Australian
species P. lawrencei suggests differences in genomic
organization from the New Zealand species. Previous
studies reported that DAPI bands were absent from the
karyotypes of the New Zealand species of Podocarpus
(Davies et al., 1997), as con®rmed here. One of the few
northern hemisphere species, P. macrophyllus (Thunb.)
Lamb., also shows conspicuous DAPI bands on approx.
two-thirds of its large telocentric chromosomes (Hizume
et al., 1988). These differences in banding patterns
between species from different areas may be taxonomi-
cally signi®cant as the status of the New Zealand and
Australian species of the genus is under review (Molloy
pers. comm.).

The retroelements that we isolated from Podocarpus and
Dacrydium species were found to hybridize to DNA from a
wide variety of other gymnosperms (Fig. 2); similar
widespread hybridization has been reported in several
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other groups of plants (Kamm et al., 1996; Brandes et al.,
1997). The patterns of membrane hybridization of PCR
ampli®ed retroelement probes re¯ected differences in copy
number and organization between different species. Some
of these results are surprising. For example, a copia probe
from P. nivalis showed no hybridization to the DNA of its
close New Zealand relative P. totara, but showed two
distinct bands with P. lawrencei from Australia and strong
hybridization to Picea abies and Ginkgo biloba. Similar
results were seen with the LINE and gypsy probes: pPot3li
from P. totara showed little hybridization to P. nivalis and
greatest hybridization to Picea abies and Ginkgo biloba, and
pPongy2 from P. nivalis did not hybridize to P. totara DNA
(Fig. 2B). The absence of clear signals following in situ
hybridization with the LINE and gypsy probes on the
chromosomes of several of the Podocarpus species and
hybrids is not unexpected given the low level of hybridiza-
tion of the same or similar probes on the gels. These results
suggest that most families of retrotransposons were present
in ancestral gymnosperms before the diversi®cation of the
recognized families, and that during the evolution of the
different taxonomic lines different families of retrotranspo-
sons were ampli®ed and multiplied (Friesen et al., 2001).

As a major and often dominant vegetation type in both
northern and southern hemispheres, the differentiation and
evolution of genomes and chromosomes in the gymnos-
perms are important elements in understanding the phylo-
geny, diversity and evolution of the species themselves. In
Pinaceae, the level of polymorphism of genetic markers in
the group is generally considered to be low (Nelson et al.,
1993) and their karyotypes exhibit considerable uniformity
in number and chromosome morphology. Study of the
conifers as a whole shows that the repetitive DNA
sequences differ widely within the group, as in other groups
(Heslop-Harrison, 2000). These sequences provide useful
diversity, and hence the study of their molecular cytoge-
netics at both the sequence and karyotypic level provides
valuable information for determining the relationships,
evolution and diversity of the group.
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